This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Coding mutations have a more direct effect through direct alteration of a gene product. In contrast, non-coding mutations have effects on gene expression, transcript stability, and the physical state of the DNA itself (e.g., Network expansion of genetic associations defines a pleiotropy map of human cellbiology.
As such, it has been proposed that inhibiting CDK7 would provide a potent means of inhibiting cell cycle progression, which may be especially relevant given that there is compelling evidence from gene knockout studies in mice for lack of an absolute requirement for CDK2, CDK4 and CDK6 for the cell cycle at least in most cell types (M alumbres et al.,
By Allessandra DiCorato October 11, 2023 In 2011, Robert Manguso was working in a cellbiology lab when his mother was diagnosed with Merkel cell carcinoma, a rare and aggressive skin cancer. When I began my PhD I completely switched my focus, and I haven’t looked back,” said Manguso.
RNA-based therapies, including mRNA and RNA interference (RNAi), are being explored to modulate gene expression in heart cells. For instance, mRNA therapies can promote the production of specific proteins required for heart tissue repair, while RNAi can silence harmful gene expression, such as those driving fibrosis in heart failure.
But now, by studying DNA extracted from microbes in the blood of almost 10,000 healthy people, this paper shows that there is no such thing. Read Transcription factors bind to DNA and control gene expression. They tend to “group up” in cells. Molecular Systems Biology. Nature Microbiology. Meeussen J.V.W.
This coordinated series of biochemical reactions where the product of one conversion becomes the substrate for another reaction is known as metabolic pathways. Metabolism also includes the disposal of waste and by-products. In the cell, these macromolecules are synthesized in a step-by-step process from simple precursors.
.” This technology could be used to design protein therapeutics that can bind to, and “shut down,” harmful or misfolded proteins in living cells. Thousands of transcription factors — proteins that bind DNA and control gene expression — were studied in human cells. Nature CellBiology.
Today, we’re launching Issue 04 with this essay about the future of fertility and in vitro oogenesis — a technology that could soon be used to convert human skin cells into eggs or sperm — by one of its foremost developers. During this process, the cells’ genomes ditch their methyl groups, an important epigenetic mark.
Short DNA strands were discovered that can specifically and tightly bind to zinc and cadmium ions. Perhaps there is now a way to use DNA to extract metals: You could fuse the DNA strands to an antibody, coat them onto electronics, and then use a column to isolate the DNA:metal compounds? Nature Chemical Biology.
Nature Reviews Molecular CellBiology (2009). Link The second decade of synthetic biology: 2010–2020 , by Meng F. & Link Synthetic biology in mammalian cells: next generation research tools and therapeutics , by Lienert F. Nature Reviews Molecular CellBiology (2014). . & Weiss R.
Experiments performed with the bacterium Streptococcus pneumoniae not only led to the discovery of DNA as the principal hereditary molecule but also yielded early tools for genetic engineering. The study of RNA tumor viruses revealed reverse transcriptase , an enzyme integral in studying RNA biology.
For example, cloning DNA molecules and inserting them into cells — a process required for basically all experiments in molecular biology — takes up to a week of work. But looking ahead to the second bottleneck, what does it mean to say that biology is “complex”? Even the humble E.
Nature Reviews Molecular CellBiology (2009). Link The second decade of synthetic biology: 2010–2020 , by Meng F. & Link Synthetic biology in mammalian cells: next generation research tools and therapeutics , by Lienert F. Nature Reviews Molecular CellBiology (2014). . & Weiss R.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content