This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
And experiments at Tune Therapeutics showed that CRISPR epigenome editing — which doesn’t cut DNA at all, but merely silences genes by adding chemical groups to them — can curb “bad cholesterol” by more than 50% in monkeys. These tools do not cut or nick DNA, and so they may be safer than other options.
And experiments at Tune Therapeutics showed that CRISPR epigenome editing — which doesn’t cut DNA at all, but merely silences genes by adding chemical groups to them — can curb “bad cholesterol” by more than 50% in monkeys. These tools do not cut or nick DNA, and so they may be safer than other options.
This week: A way to measure a transgene’s expression in the brain using ultrasound, a DNA sequencing method that uses 1000x less reagents, and base editors get even smaller. An engineered version of this protein can convert DNA bases with efficiencies up to 92%. so this Digest will be published more irregularly.
This week: A way to measure a transgene’s expression in the brain using ultrasound, a DNA sequencing method that uses 1000x less reagents, and base editors get even smaller. An engineered version of this protein can convert DNA bases with efficiencies up to 92%. so this Digest will be published more irregularly.
DNA sequences are designed on a computer, and it takes a dozen or more clicks to change a single nucleotide. DNA sequences are also checked by hand, so it’s easy to make a mistake. The tool outputs a DNA sequence that encodes all the required enzymes. There’s a live demo available online. A Mycoplasma cell.
DNA sequences are designed on a computer, and it takes a dozen or more clicks to change a single nucleotide. DNA sequences are also checked by hand, so it’s easy to make a mistake. The tool outputs a DNA sequence that encodes all the required enzymes. There’s a live demo available online. A Mycoplasma cell.
Tessa Alexanian and Max Langenkamp build computational DNA screening tools for a living. But today, rapid advances in DNA synthesis have made it possible for would-be bioterrorists to make pathogens, rather than buy them. government must order synthetic DNA from providers who publicly state that they follow the U.S.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content