This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
During the process of transformation from a normal cell into a cancer cell, a cell acquires a series of changes, or mutations, in its DNA. But DNA mutations can also result in changes to the proteins that are displayed on the surface of the cancer cell. Neoantigens are recognised as non-self and trigger an immuneresponse.
Scientists from the Massachusetts Institute of Technology (MIT) and the University of Massachusetts MedicalSchool (UMass), US, have collaborated to create a novel type of nanoparticle that can deliver messenger RNA that encodes for beneficial proteins to the lungs.
Unlike almost every other cell type (except B cells), T cells do not have the exact same chromosomal DNA sequences as other cells in the body. To be therapeutically useful, antigenic peptides must be presented in a way that allows immuneresponses to destroy cancer cells without causing unacceptable damage to healthy tissue.
Natural killer (NK) cells are another immune cell type that, as the name suggests, also have potent cell-killing activity, and have a well-known role in the anti-tumour immuneresponse. In the context of a tumour microenvironment, Tregs are often present in high numbers, preventing an effective immuneresponse to the tumour.
Researchers from Harvard MedicalSchool describe a new ChatGPT-like model that can guide clinical decision-making to diagnose, treat, and predict survival for several types of cancer. This removes the cancer’s blocking of the immuneresponse, so that T cells can fight the cancer. Their report appears in Nature.
Related people Paul Blainey Nir Hacohen A signaling protein known as STING is a critical player in the human immune system, detecting signs of danger within cells and then activating a variety of defense mechanisms.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content