This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
doi: 10.2210/rcsb_pdb/goodsell-gallery-048 The Virus that Cures It’s been over 25 years since the science magazine Discover first ran an extraordinary article about how a long-forgotten medical treatment, used in the former Soviet country of Georgia, could save us from the growing threat of untreatable, drug-resistant infections.
Most people would take the two CRISPR gene-editing components (a Cas9 protein and guide RNA), package them up inside of a virus, and then inject the viruses into the skulls of mice. Unfortunately, they can also trigger immuneresponses, and they are not super efficient at gene-editing some parts of the brain. From Stahl E.C.
Most people would take the two CRISPR gene-editing components (a Cas9 protein and guide RNA), package them up inside of a virus, and then inject the viruses into the skulls of mice. Unfortunately, they can also trigger immuneresponses, and they are not super efficient at gene-editing some parts of the brain. From Stahl E.C.
It would also be undetectable by key parts of the human immune system. Some scientists even think it had a virus defense system; “researchers say LUCA likely housed 19 CRISPR genes, which bacteria use to slice up viral threats,” reports Quanta Magazine. Not all pathogens spread quickly.
Skin microbes can trigger strong immuneresponses. These microbes were engineered to express tumor antigens that could “elicit T cells that were licensed by the commensal immune program but specific for a tumor,” including both CD4+ and CD8+ T cells, according to the study. ” Joshua Sokol for Quanta Magazine.
Influenza incidence and severity are increasing , against a backdrop of novel drifts (small genetic changes) and shifts (larger changes) to the virus, all against a backdrop of novel infection pathways, such as birds to cows to people. The mRNA in COVID vaccines tells cells to produce the virus’s spike protein.
Link A DNA tumor virus globally reprograms host 3D genome architecture to achieve immortal growth. Link *Immunization against Zika by entrapping live virus in a subcutaneous self-adjuvanting hydrogel. Link A protective measles virus-derived vaccine inducing long-lasting immuneresponses against influenza A virus H7N9.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content